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Abstract

A generalized Flory–Huggins parameterx is utilized to study immiscibility-loop phase behaviour of binary polymer blends. Special
emphasis is placed on the temperature dependence of thex parameter. It turns out that specific interactions, that gradually become weaker
with ascending temperature, lead to miscibility at low temperatures and, eventually, to phase separation at sufficiently high temperatures
(lower critical solution temperature behaviour). In addition, if a favourable noncombinatorial entropy contribution to parameterx becomes
more and more dominant with increasing temperature then it leads again to a homogeneous system (upper lower critical solution temperature
behaviour). From a molecular point of view, this stabilization of the mixture at high temperatures might be attributed to nonrandom packing
effects caused by structural disparities of the constituents. It is also demonstrated that immiscibility-loop phase behaviour can only be
observed in blends of constituents having sufficient asymmetry in the polymerization indices.q 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Usually, miscible polymer–polymer blends tend to phase
separate at elevated temperatures, i.e., an entropy-driven
lower critical solution temperature (LCST) occurs where
the mixture phase separates upon heating [1–6]. For misci-
bility of polymers, favourable interactions between the
constituents are necessary owing to the small combinatorial
entropy of mixing in polymer mixtures. Phase separation at
sufficiently high temperatures is then caused by noncombi-
natorial entropy contributions to the free energy of mixing.
Polymer blends displaying an upper critical solution
temperature (UCST) are also known. Phase separation at
low temperatures and miscibility at sufficiently high
temperatures was reported, e.g. for blends of polystyrene
(PS) and its deuterated analogue [7] and also for PS blended
with differently substituted polystyrenes [8]. There are also
blends exhibiting both LCST and UCST with the LCST
situated above the UCST [9–11].

Recently, it was reported that polymer–oligomer blends
also display immiscibility-loop phase behaviour where the
UCST occurs at higher temperatures than the LCST. Such
phase behaviour was found when isotactic polypropylene was
blended either with hydrogenated oligo-(cyclopentadiene)

[12] or hydrogenated oligo(styrene-co-indene) [13,14]. In
Ref. [15], it was inferred from measurements of interfacial
tensions that blends of poly(isobutylene), having a relatively
low molecular mass of 1500 g/mol, and poly(dimethyl
siloxane) of high molecular mass may exhibit also a
closed immiscibility gap. Although, the LCST is expected
to shift to very low temperatures. Also for polymer
solutions, e.g. aqueous solutions of poly(ethylene glycol)
[16] or poly(propylene glycol) [17], immiscibility-loop
phase behaviour was observed.

The phase behaviour of polymer mixtures is controlled by
two thermodynamic quantities, the entropy of mixing,
comprising combinatorial and noncombinatorial contribu-
tions, and the energy of mixing which is related to interac-
tions between the segments. The noncombinatorial entropy
of mixing and the energy of mixing represent the excess free
energy of mixing,DFE. Then, the Helmholtz free energy of
mixing per total number of monomers,DFM, might be
expressed by

DFM � DFE 2 TDScomb: �1a�
The combinatorial entropy of mixing,DScomb, is given in

the context of the Flory–Huggins theory by the well-known
expression [18] while the excess free energy of mixing is
represented by

DFE

RT
� xFAFB �1b�
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whereFi is the monomer volume fraction of componenti
and x is a dimensionless free-energy parameter. In the
following, parameterx is considered as a function of
temperature and volume only; a potential concentration
dependence ofx is neglected. The phase stability of poly-
mer blends is crucially governed by the temperature depen-
dence of parameterx . In the limit of very high degrees of
polymerization, the parameterx has to be negative for
miscibility of the blend constituents. LCST behaviour will
occur if parameterx turns from negative to positive values
at a certain temperature. For an immiscibility loop, the para-
meterx has to be negative at low and high temperatures and
positive in a temperature range in between. It becomes
obvious, owing to the small combinatorial entropy of
mixing in polymer mixtures, noncombinatorial entropy as
well as energy contributions to the free energy of mixing
assume a major role.

This paper focuses on a temperature dependence of para-
meter x that allows to describe immiscibility-loop phase
behaviour.

2. The temperature dependence of parameterx

From thermodynamic standard relations, it follows that

2
2

2T
T2 2

2T
DFE

RT

 !
� DCE

V

R
�2�

whereDCE
V is the molar excess heat capacity of the mixture.

If one neglects the concentration dependence of parameter
x , it is justified to approximateDCE

V by CVAFAFB, i.e., the
variation ofDCE

V with temperature is ruled by that ofCVA.
Eq. (2) leads then with Eq. (1b) to the following relationship
for the temperature dependence of parameterx

2
2

2 ~T
~T2 2x

2 ~T

� �� �
~T� ~TA

� CVA

R
: �3�

In Eq. (3), the temperature is replaced by the reduced
temperature~T. This allows easily to apply Flory’s equa-
tion-of-state. The reduced quantities for pure substance A
are defined by~XA ; X=XA* with XA* being the respective
reference parameter of substance A. QuantityVA* is the
specific hard-core volume at 0 K.

Application of Flory’s equation-of-state in the limit~P!
0 [19]

~T � ~V1=3 2 1
~V4=3

�4�

implies for the temperature dependence of the heat capacity
[5]

CV

R
� ~V1=3

4=3 2 ~V1=3 : �5�

Parameterx becomes solely a function of reduced volume
in the limit of Eq. (4),x � x� ~V�: After inserting Eq. (5) into

Eq. (3) and integrating twice, one arrives at

x� ~VA� � B 1
A ~V4=3

A 2 1
h i

~TA
~V4=3

A

2 3 ln ~TA
~V4=3

A

� �
�6�

where the integration constantsA and B are adjustable
constants. Eq. (6) gives in combination with Eq. (4) the
temperature dependence of quantityx or, vice versa, Eq.
(4) can be used to formulate parameterx as a function of
reduced volume only.

3. Results and discussion

As mentioned before, parameterx is a free-energy para-
meter comprising an energetic part,xU and an entropic part,
xS

x � xU 1 xS

with

xS� 2

2 ~T
� ~Tx�:

Note,xU / DUM andxS/ 2DSE whereDUM is the energy
of mixing andDSE the noncombinatorial entropy of mixing.
With Eq. (6), it follows that

xU � 1
~TA

~VA
A ~VA 2 1
� � �7a�

and

xS� B 1 1 2 3 ln ~TA
~V4=3

A

� �
: �7b�

In this approximation, the coefficientsA and B rule the
energetic and noncombinatorial entropic contribution,
respectively, to parameterx . Eq. (6) shows that�x 2 B� is
for A , 20.0312 a negative and monotonously increasing
function of ~V1=3

: For sufficiently high positive values ofB,
parameterx may turn to positive values which corresponds
to occurrence of an LCST that shifts to lower temperatures
with increasingB. If constantA is in the range20:0312#
A # 0:422; the function�x 2 B� displays the same curva-
ture, however, it passes to positive values above a certain
value of ~V1=3

: This change shifts to lower temperatures with
ascendingA (from ~V1=3 < 1:33 to < 1.055 in the indicated
range). ForA $ 1, �x 2 B� is positive and a monotonously
descending function of~V1=3

: Hence, parameterx may turn
to negative values ifB , 0. This corresponds to occurrence
of a UCST. In the range 0.422, A , 1, the function�x 2 B�
is negative at sufficiently low temperatures and displays a
maximum atA ~V � 1 wherexU�A ~V � 1� � 0 and�x�A ~V �
1�2 B�max� �xS 2 B� . 0: Moreover, the slope ofx �
x� ~V1=3� is given by

x 0 � 23
4=3 2 ~V1=3
� �

A ~V 2 1
ÿ �

~V1=3 2 1
ÿ �2 :

For A ~V . 1 the slope is negative and its magnitude
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gradually decreases with increasing~V1=3
: Therefore,�x 2 B�

remains positive. IfB , 0, however, parameterx might turn
after the maximum again to negative values. In other words,
we have an LCST at low temperatures while a UCST turns
up at high temperatures. This is illustrated for one example
in Fig. 1. We use in Fig. 1 and, similarly, in the following
figures, the quantity~V1=3

A as an equivalent of temperature
according to Eq. (4); increasing~V1=3

A means increasing
temperature. Here, miscibility originates from favourable
interactions at low temperatures while at high temperatures
a positive noncombinatorial entropy contribution becomes
dominant. Obviously, the negative value of parameterB
reflects here in a phenomenological way the structural
disparities of the constituents at the monomeric and chain
level, i.e., differences in monomer size and chain stiffness,
that give rise to a positive noncombinatorial entropy as
discussed in Refs. [20,21]. Fig. 2 shows the variation of
the critical points with parameterA for a given set of
values for parameterB and the degrees of polymeriza-
tion, rA and rB. With increasing value ofA, the LCST
shifts to lower temperatures while the UCST shifts to
very high temperatures. In other words, the immiscibility
loop becomes more and more extended whenA or the value
of xU increases.

Fig. 3 gives a phase diagram for an oligomer–polymer
blend with an immiscibility loop, calculated with parameter
x after Eq. (6) and using Eq. (1a). Relevant equations for
spinodal, binodal and the critical points are given in the

appendix. Only for blends with pronounced asymmetry in
the polymerization indices, one can observe asymmetrical
immiscibility loops. When the degrees of polymerization for
the constituents approach each other more and more, the
LCST and UCST shift to lower and higher temperatures,
respectively, and the phase diagram becomes more
symmetric. This is indicated in Fig. 4 where the concentra-
tions of the coexisting concentrated and diluted phases with
highest and lowest concentration, respectively, are depicted
versus polymerization indexrB at ~V1=3

A � const: The selected
value of ~V1=3

A represents the horizontal symmetry axis of the
corresponding phase diagram. Fig. 4 demonstrates that with
increasing polymerization indexrB the coexisting phases
rapidly approach highly diluted regimes. For a completely
symmetrical blend, with polymerization indicesrA � rB;

the phase diagram is also symmetrical. This is shown for
one example in Fig. 5.

In conclusion, occurrence of an immiscibility loop in
polymer blends requires both favourable interactions
between the constituents and structural dissimilarities of
the constituents that lead to a positive noncombinatorial
entropy contribution. With increasing temperature, the
interactions are weakened, causing LCST behaviour,
while the noncombinatorial entropy contribution becomes
more and more dominant, leading eventually again to phase
stability of the blend or UCST behaviour. This phase beha-
viour is experimentally easily accessible only for blends
with asymmetrical polymerization indices.
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Fig. 1. Parameterx and its constituentsxU andxS as a function of~V1=3
A :

ParametersA � 0.83,B � 28.8.
Fig. 2. Critical temperatures as a function of parameterA. ParametersB�
28.66,rA � 1000,rB � 50.



Appendix

The spinodals were calculated from

1
rAFA

1
1

rBFB
2 2x � 0 �A:1�

with parameterx from Eq. (6).
The binodals are obtained by simultaneously solving the

two equations:

1
rA

ln
F 0

F 00

 !
� �F 0 2 F 00�

� 1
rA

2
1
rB

� �
2 x�F 0 1 F 00�1 2x

� �
;

�A:2�

1
rB

ln
1 2 F 0

1 2 F 00

 !
� �F 0 2 F 00�

� 1
rA

2
1
rB

� �
2 x�F 0 1 F 00�

� �
: �A:3�

Critical points are given by the solution of

1
FAcr

� 1 1

�����
rA

rB

r
and xcr � 1

2
1���
rA
p 1

1���
rB
p

 !2

:

�A:4�
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Fig. 3. Binodal and spinodal (–-) calculated with parameterx , Eq. (6).
Markers indicate the critical points. ParametersA� 0.8,B� 28.66,rA �
1000,rB � 50.

Fig. 4. Highest and lowest concentration (–-) of the coexisting phases
versus polymerization indexrB. Parameters:~V1=3

A � 1:078; A � 0.8, B �
28.66,rA � 1000.

Fig. 5. Binodal and spinodal (–-) for a symmetrical blend. Markers indicate
the critical points. Parameters:A � 0.8,B � 28.66,rA � rB � 1000.
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